1	Chapter 13
2	Henry M. Leicester and
3	Development of Biochemical Concepts from Ancient to Modern Times (1974)
4	
5	Henry Leicester received his Ph.D. in Biochemistry from Stanford University in
6	1930. He pursued this subdiscipline of chemistry throughout his career. He also
7	became a prolific historian of chemistry and was awarded the 1962 Dexter Prize
8	for his work on the history of Russian Chemistry. His last major book combined
9	his love of biochemistry and his love of history.
10	
11	The Preface reveals that Leicester understood both chemistry and biology better
12	than most biologists and chemists. He also understood what science history is.
13	Rather than trying to narrow the field of discussion, he has chosen to follow the
14	evolving concepts that were already evident in the work of Aristotle and Galen.
15	
16	Leicester defines Biochemistry as:
17	
18	The study of the composition of living organisms and the mechanisms
19	by which the various components interact to produce the changes in
20	metabolism and function that make life as we know it.
21	
22	One of the first issues for observing and thinking humanity was the distinction
23	between living and nonliving matter. This led to a demarcation between "organic"
24	and "inorganic" matter. This way of thinking is still present in 1974.
25	
26	Other sets of distinctions arose: heat and cold, male and female, wet and dry, etc.
27	The concept of "contraries" is found throughout the history of chemistry. Leicester
28	attributes thinking of this kind to Mesopotamian culture: Sumerian and Babylonian
29	civilizations. Extensive "pharmacopeia" have been discovered from this period.
30	Exerction abraicions and monticions an accord in dissoction of animal hadies
31	Egyptian physicians and morticians engaged in dissection of animal bodies,
32	including humans. They focused on the "input-output" nature of life. They also
33 24	identified different kinds of "fluids" associated with living organisms. Strict "diets" were prescribed in order to maintain "balance." (This form of medicine
34 35	survives in Idaho and Hollywood.)
35 36	survives in really and from wood.
30 37	

- The greatest of the 2^{nd} century physicians was Galen of Pergamon (129-199). He
- 40 was a court physician and employed all the known "drugs" in his practice. One of
- 41 his most famous potions was "theriac." He did not invent it, but he did concoct it
- 42 as part of his imperial practice. The recipe contained 64 ingredients. The basic
- theriac started with wine, herbs and honey. It often included cinnamon. Flesh of
- 44 vipers was a common ingredient. But the most important constituent was opium!
- 45
- In the "Molecular World" (Jackson, 2023) of the 21st century it is easy to forget
- that for 30,000 years chemists thought in terms of macroscopic "substances."
- 48 Galen was a keen observer of the biological world. He applied his knowledge to
- 49 the health of his emperors and gladiators. Like Paracelsus, most of his patients
- 50 lived, rather than died. He was a keen observed of blood, and recognized that there
- 51 were "different" forms in the arteries and veins. He studied phlegm and used it to
- 52 diagnose disease. He studied "bile" and divided this "world" into yellow and
- ⁵³ black. He observed both input substances, like air and water and wine, and output
- substances, like vomit, urine and excrement. (There are still Galenic physicians in
- Idaho.) Galen created a "coherent" world that persisted until the present.
- 56
- 57 Leicester chooses Theophrastus Bombast von Hohenheim (1493-1541)
- 58 (Paracelsus) as the first practitioner of biochemistry. Like many of his
- 59 predecessors, Paracelsus was a practitioner of "medicine." Unlike most of them,
- 60 he treated the poor as well as the rich. He adopted a dynamic view of material
- reality and believed that substances could be changed from one sort into another.
- 62 Paracelsus "personalized" his agent of change: the Archeus. He claimed that it was
- an Archeus that "dwelled" in the stomach that changed food into nutriment. He
- 64 assigned a different Archeus to each human organ.
- 65
- One of Paracelsus' insights was that material that "accumulated" in the body was not beneficial. Gout is caused by crystals of uric acid. Kidney stones are often due to crystals of calcium oxalate. He believed in "specific" medicines that cured actual diseases. He also understood that chemical remedies needed to be given at the right dosage. Too little may have no effect and too much may kill the patient.
- 71
- 72 While Paracelsus did not employ the common ploy of swirling urine in a flask to
- reveal the disease, he did chemically analyze urine. He understood that it was a
- 74 mixture of substances. He precipitated "albumin" in the urine by adding acid.

75	
76	Leicester quotes one of Paracelsus' biographers: H. M. Pachter (1907-1980) from
77	Paracelsus: Magic into Science (1951).
78	
79	"As a biochemist he asserted that man is made out of the same
80	material as the rest of creation,
81	feeds on the substances which make up the universe,
82	and is subject to the laws which govern their growth and decay.
83	At the same time, each living being is unique,
84	individually constituted, and follows his own destiny."
85	
86	Two 17 th century physicians that adopted the "spirit" of Paracelsus were Santorio
87	Santorio (1561-1636) (Sanctorius) who wrote <i>Medicina Statica</i> (1720, my English
88	copy) and William Harvey (1578-1657) who wrote <i>Exercitatio Anatomica de Motu</i>
89	Cordis et Sanguinis in Animalibus (1628). While the microscopic level of
90	chemistry was centuries away, these physicians adopted a coherent picture of
91	observable physiology. They knew that biological fluids were complex. They
92	traced the actual flow of these substances.
93	
94	The 18th century was characterized by major advances in understanding Chemistry
95	and by aggressive attempts to impose ancient ideas on modern chemistry.
96	Hermann Boerhaave (1668-1738) was Professor of Medicine, Botany and
97	Chemistry at the University of Leiden. He inherited a Physic Garden and
98	eventually bought an estate to expand and curate the best such garden in the world.
99	Many 18 th century physicians were trained at Leiden. And his <i>Elementa Chemiae</i> (1732) is still worth reading!
100	(1752) is suit worth reading!
101 102	Boerhaave was a consummate experimentalist. Rather than merely accepting
102	ancient bad ideas, he tested actual biological samples in the laboratory. Fresh urine
104	is neither acidic nor alkaline when tested. Over time changes can occur and he
105	analyzed the substances that composed urine and blood.
106	
107	Boerhaave clarified the processes of digestion and refuted many of the older
108	speculations. He promoted the notion that internal chemical processes were
109	involved and that no external fictive agents were involved.
110	
111	The Netherlands was the home of great thermometers and microscopes.
112	Boerhaave employed them in the service of biochemistry. He observed red blood
113	cells and discovered the effect of pure water on these cells: hemolysis! He

- observed biological "fibers" with his microscope. The long march from naked
- observations to electron microscopy went through Leiden.
- 116
- Boerhaave studied the products of fermentation of both plants and animals. Plants
- tended to produce acidic products, while animals yielded alkaline substances.
- 119 (Leicester notes that a great history of agricultural chemistry was written by
- 120 Charles A. Browne (1870-1947): "A Source Book in Agricultural Chemistry,"
- 121 *Chronica Botanica* **8**, 103 (1944). Browne was a sugar chemist and Director of the
- US Bureau of Chemistry. He was also a founder of the Division of the History of
- 123 Chemistry.) He distinguished between "carbohydrates" that dominated plant life
- and "proteins" that dominated animal life. Boerhaave isolated "gluten" from wheatand showed that it was a protein!
- 126
- 127 Boerhaave also isolated urea from urine. This chemical process took over a year of
- patient manipulation. (Boerhaave was the most patient chemist of all time: he
- distilled the same sample of mercury 511 times. Its mass density increased with
- time!) His biographer, G.A. Lindeboom (1905-1986) credits him with introducing
- real biochemistry into medical teaching.
- 132

Georg Ernst Stahl (1660-1734) was also a Professor of Medicine, but he set both 133 medicine and chemistry back 100 years by his work. He retained a firm belief in 134 animism: the belief that there was a non-material spirit that energized plants and 135 animals. He is known today mostly for his theory of "phlogiston," a throwback to 136 Aristotle: bare matter became combustible by adding phlogiston. (One of the 137 most amusing applications of this conceptual framework was the creation of 138 laughter by adding "hilarity" to bare nitrous oxide!) In medicine he promoted the 139 idea that an immaterial "anima sensitiva" acted "directly on all bodily processes." 140

- 141 He denied most of the currently accepted facts about human physiology.
- 142

143 One of Boerhaave's most famous students was Albrecht von Haller (1708-1777).

144 He was Professor of Medicine at the University of Gottingen and published the

- 145 books: Primae lineae physiologie (1747) and Elementa physiologiae corporis
- *humani* (1757). He debunked many of the demonstrably false medical notions of
- 147 his time by careful experimentation and lucid description. He isolated iron from
- blood. He also verified the work of Stephen Hales (1677-1761) that demonstrated
- 149 that gas was dissolved in blood.
- 150
- 151 Haller carried out extensive studies of "bile." He demonstrated that it served to
- "digest" "oily" food. The chyle became an "emulsion." He added the class of
- 153 "fats" to carbohydrates and proteins.

154 155 156 157 158 159 160 161 162	The later 18^{th} century was christened "The Age of Air": pneumatic chemistry. Joseph Black (1728-1799) showed the way when he examined metal carbonates and heated them to drive off a gas he called "fixed air." (CO ₂) Marble could be restored by bubbling carbon dioxide through "lime water" (CaO(aq)). Black proved that human "exhalation" contained CO ₂ by directing it at this solution, Although chemists knew that ordinary air could be deprived of its ability to support combustion, the notion that "air" could not react chemically still persisted until the late 18^{th} century!
163 164 165 166 167 168 169 170 171	New "gases" were now being discovered with regularity. While many people contributed to the discovery of oxygen, Leicester focuses on Joseph Priestley (1733-1804). He heated mercuric oxide and collected the gas given off. He knew that there was a relationship between combustion and respiration. Manchester was famous for its breweries! The vats produced vast quantities of "fixed air." One product of his research was "soda water," still being produced today. Priestley called his "oxygen" "dephlogisticated air." He also discovered many other gases, such as nitric oxide (NO), hydrogen chloride (HCl) and nitrogen dioxide.
172 173 174 175 176	Leicester admired Antoine Laurent Lavoisier (1745-1794). (So do I.) He named the new gas "oxygen" (acid-maker). This concept confused chemists for a century. While many acids do contain oxygen, many more do not. It was claimed that HCl must contain oxygen because it was an acid!
177 178 179 180 181 182 182	Lavoisier did carry out extensive studies of animal respiration. He identified three gases: "eminently respiration air" (oxygen), fixed air and "mephitic air" (nitrogen). He also constructed a good calorimeter based on the ice/water system. He also teamed up with the genius Pierre Simon Laplace (1749-1827). They used an actual guinea pig and showed that the amount of heat produced correlated with the amount of fixed air produced.
183 184 185 186 187 188 189 190 191 192 193	Respiration is thus a combustion, very slow, it is true, but perfectly similar to that of carbon; it occurs in the interior of the lungs, without disengagement of visible light since the matter of fire which becomes free is at once absorbed by the humidity of these organs. The heat developed in this combustion communicates itself to the blood which traverses the lungs and from there it spreads over all the animal system.

- 194 While this model was not correct, it was consistent with previous speculations
- about the site of "combustion." Had Lavoisier lived, he would probably have
- realized that the role of the lungs was to absorb oxygen, transport it to the cells,
- absorb carbon dioxide, transport it to the lungs and repeat.
- 198

Animals are not the only biologically active entities on earth. Plants obtain their
"energy" from the sun. Priestley examined aquaculture of plants like mint. As long
as there was light, they could grow on pure fixed air. In addition, they produced
oxygen. Similar experiments were carried out by Jan Ingen-Housz (1738-1799)
and by Jean Senebier (1742-1809). The best studies of plant growth were done by
Nicolas Theodore de Saussure (1767-1845). In addition to carbon dioxide, plants
require water for growth and minerals from the soil.

206

One by one correct concepts were being adopted by the best biochemists. One of
these conservation laws was the natural outcome of the "stoichiometry" of

Jeremias Benjamin Richter (1762-1807). The mass of the products is equal to the mass of the reactants. Part of the "understanding" of any chemical process is the

- 211 identification of the reactants and products.
- 212

While the chemistry of "fire" dominated metallic and mineral chemistry, organic
materials were simply destroyed by fire. Antoine Francois de Foucroy (1755-1809)

developed "extraction" procedures for plant chemicals. (Many of these recipes are in use today. Many "extracts" can be purchased in the "grocery store.") One

- technique involved "steam distillation" of the raw plant or a "minced" portion.
- 218 Other extraction media included pure and salt water solutions, and pure ethanol or
- aqueous solutions. Another approach perfected by Scheele employed the low
- solubility of many calcium salts. The solid salts could then be purified and the
- pure acid recovered: tartaric, citric, malic and lactic acids. Pure animal bone could
- be solubilized and reprecipitated as calcium phosphate.
- 223

While animal tissue contains proteins, it was not obvious how the nitrogen was obtained chemically. Claude-Louis Berthollet (1748-1822) characterized ammonia (NH₃), but it was not until the 19th century that quantitative nitrogen analysis of organic compounds was achieved by Jean Baptiste Andre Dumas (1800-1884) and

- 228 Justus von Liebig (1803-1873).
- 229

One of the greatest chemists of the 19th century was Jons Jacob Berzelius (1770-

- 1848). While he was a great analytical chemist, he reminded the "Animal
- 232 Chemists" that their job was not done until they incorporated the full chemical
- 233 network of biochemicals. Isolated substances were not the full story.

There are many classes of animal compounds. Michel Eugene Chevreul (1786-234 1889) devoted his research to "fats." These compounds are composed of glycerol 235 and are esters of organic acids. They can be "saponified" with lye. Vegetable oils 236 are also "triglycerides". 237 238 Chapter 13 focuses on the concept of "vitalism." Leicester presents a quotation 239 from Berzelius: "Vitalism is a word to which we can fix no idea!" It served as an 240 "explanation" when there was no actual understanding. One form of the question 241 was the demarcation between inorganic and "organic" substances. Vitalism 242 insisted that only living organisms could produce organic molecules. Another 243 demarcation was between living and nonliving systems. Living systems contained 244 a "vital force" that both initiated and sustained life. No chemist could create a 245 living system. Claude Bernard (1813-1878) expressed it this way: "Life cannot be 246 characterized exclusively by either a vitalist or a mechanist conception." (Vitalism 247 still pervades rural American culture in places like Idaho.) 248 249 Understanding living systems required a central physiological concept: "cells." 250 Both plants and animals contain cells with a defined boundary and a complex 251 interior structure. The contents of cells were called "protoplasm." (small 252 unknowns!) 253 In 1868 Thomas Henry Huxley (1825-1895) delivered a lecture 254 In which he called protoplasm "the physical basis of life." 255 256 Pure "physiologists" tended to treat protoplasm as a pure substance in its own 257 right. While this appealed to them as a simple solution, it could not account for the 258 myriad properties of cells. Chemists thought about cells as "vessels" with a 259 solution inside. (The classic form of a cow: a sphere with uniformly distributed 260 milk.) Real cells are highly specialized and are extremely complex inside. 261 262 As the 19th century progressed, chemists such as Marcellin Berthelot (1827-1907) 263 synthesized many "organic" molecules directly from the elements. (One of my 264 favorite 19th century books is *Chimie organique fondee sur la synthese* (1860).) 265 While the mechanism employed by cells to synthesize the required molecules was 266 not yet known, the laboratory versions were often shown to be identical to the 267 "natural" ones. Biochemical philosophy in the 19th century was complicated and 268 much of it has not persisted, except in Idaho. 269 270 271

Chapter 14 revisits the physiological issue of digestion and "assimilation." The 273 "alimentary canal" is continuous with substantial tortuosity and a few valves. It is 274 also an "open" system that communicates with many other physiological systems, 275 including the arterial blood. One of the most important 19th century chemists and 276 physiologists was Dr. William Prout (1785-1850). His Bridgewater Treatise was 277 on Chemistry, Meteorology, and the Function of Digestion (1855, Fourth Edition, 278 my copy). While religiously he was "very devout," he insisted that chemical 279 processes were just that, and the understanding of digestion should focus on the 280 chemical substances involved. Prout carried out experiments on animals after 281 eating; he extracted their stomachs with cold, distilled water. He found a very acid 282 solution, but no sulfuric or phosphoric acid. He stated: 283 284 285 The results then seem to demonstrate that free or at least unsaturated muriatic acid 286 in no small quantity exists in the stomachs of these 287 animals during the digestive process. 288 289 One of the most remarkable studies of human "gastric juice" was carried out by the 290 North Americans William Beaumont (1785-1853), Robley Dunglison (1796-1869) 291 and Benjamin Silliman of Yale. They were able to drain gastric juice from a 292 fistula in the stomach of an injured man. Dunglison reports: 293 294 We have found it to contain free muriatic and acetic acid. 295 phosphates and muriates of potassa, soda, magnesia and lime, 296 and an animal matter soluble in cold water but not in hot. 297 298 Aqueous hydrochloric acid does in fact react with many foods in vitro. But real 299 gastric juice contains other active substances. One of the best French chemists of 300 the mid-19th century, Anselme Payen (1795-1871), discovered "diastase" which 301 converted starch, a carbohydrate studied by Payen, to simple sugar. Later it was 302 shown that "saliva" also contains diastase. (Today a whole group of enzymes are 303 called diastases: they break down carbohydrates.) (The cellulose division gives an 304 annual award in honor of Payen.) 305 306 Another biochemically active gland is the pancreas. It is connected to the 307 alimentary system by a "duct." (It is part of the "exocrine" system.) Three major 308 digestive enzymes are produced by the pancreas: amylase (diastase), lipase (breaks 309 down fats) and protease (trypsin breaks down proteins). 310 311 312

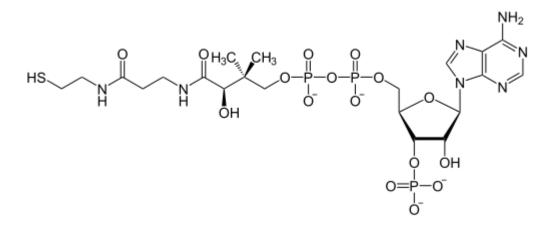
Leicester discusses the growing awareness that many biochemical processes were 313 "catalyzed" by active chemical agents in bodily fluids. Claude Bernard devoted 314 his life to tracing the biochemical pathways of sugars. He discovered the role of 315 the liver in sugar metabolism. (Humans cannot metabolize sucrose. It must be 316 broken down to glucose.) Remarkably, the liver can synthesize glucose without the 317 need for starch. (Blood enters the liver by the "portal vein" without the presence 318 of sugar; it leaves through the hepatic vein with sugar present.) The source of the 319 sugar is the carbohydrate "glycogen." (Glycogen in muscles produces lactic acid.) 320 321 Chapter 15 continues the discussion of "ferments." Dealing with higher animals 322 and plants was complicated. Charles Cagniard de Latour (1777-1859) realized that 323 yeast was the key factor in alcoholic fermentation. Louis Pasteur (1822-1895) 324 established the field of chemical microbiology. Some fermentations required the 325 full living cell to be effective. One of the phenomena documented by Pasteur is 326 the role of oxygen in the life-cycle of yeast. When it is freely available, the yeast 327 uses it to metabolize whatever it can and gain the needed energy. When oxygen is 328 only sparingly available, the yeast obtains its oxygen from oxygen-containing 329 molecules like sugar. He also discovered truly anaerobic cells. 330 331 Another chemical process is the inversion of sucrose by the soluble enzyme 332 invertase. In 1876 Willy Kuhne (1837-1900) proposed the name "enzyme" for the 333 now numerous soluble ferments. Leicester summarizes this period with: 334 335 All fermentations produced by living organisms 336 were due to ferments secreted by the cells. 337 The distinction between "organized" and "unorganized" ferments 338 no longer existed, and all could be called enzymes. 339 340 In 1897 Gabriel Bertrand (1867-1962) demonstrated that additional substances 341 were often needed to activate soluble enzymes. (These are now called 342 coenzymes.) 343 344 The chemical nature of enzymes was still obscure until in 1926 James B. Sumner 345 (1887-1955) isolated a pure crystalline enzyme, urease. It was a protein! The race 346 to crystallize enzymes was on and Nobel Prizes were awarded in 1946. His co-347 recipients were John Northrup (1891-1987) and Wendell Stanley (1904-1971). 348 Once biological enzymes were recognized as "catalysts," Leonor Michaelis (1875-349 1949) constructed an actual chemical mechanism for their action. 350 351 352

353	While groups of substances could be identified, their chemical microstructure
354	needed to wait until difficult analytical and synthetic methods were developed.
355	Emil Fischer (1852-1919) (Nobel 1902) brought order out of chaos for both
356	carbohydrates and proteins. A conclusion was reached by Franz Hofmeister (1850-
357	1922):
358	On the basis of the facts given,
359	we can regard the proteins chiefly as
360	condensations of α -amino acids
361	in which the group CO-NH-CH
362	is regularly repeated.
363	
364	(This macromolecular insight was strongly resisted by the biochemical community
365	and proteins were viewed as colloidal aggregates throughout the 20 th century.)
366	
367	The discovery of "nucleic acids" is attributed to Friedrich Miescher (1844-1895)
368	and Felix Hoppe-Seyler (1825-1895). The "smoking gun" was the presence of
369	phosphorus. Progress in understanding the nucleic acids was slow, but Phoebus A.
370	Levene (1869-1940) gradually identified a set of nucleotides composed of a
371	carbohydrate, a phosphate linker and a group of attached bases: adenine, thymine,
372	guanine and cytosine. In 1930 Levene finally identified the carbohydrate as 2-
373	deoxypentose. Another of Levene's major discoveries was the apparent molecular
374	weight of the intact DNA macromolecule (1-2 million).
375	
376	Chapter 16 focuses on "Energy Production and Biological Oxidation."
377	
378	Leicester begins his story with Julius Robert Mayer (1814-1878), a ship's
379	physician. In 1842 he published the now classic paper: "Observations on the
380	Forces of Inanimate Nature." It connected the appearance of "heat" with changes
381	in the energy of the system. Further progress was made by Max Joseph von
382	Pettenkofer (1818-1901): "As coal, burned under a boiler, moves a steam engine,
383	so do fats and carbohydrates by their oxidation in the body to carbon dioxide and
384	water yield the power for our mechanical performance." This perspective was
385	firmly established by the great physiologist and physicist Hermann Helmholtz
386	(1821-1894).
387	Once the basis thermodynamics of energy and better in lining energy
388	Once the basic thermodynamics of energy production in living organisms was
389	established, it was up to the chemists to "find the fuel" and construct the series of
390	chemical reactions that liberated the heat. Justus Liebig and his student Carl Voit
391	(1831-1908) conscripted a group of soldiers to be the guinea pigs for his chemical

balance studies. Voit concluded:

393	
394	Liebig was the first to establish the importance of chemical transformations
395	in the body. He investigated the chemical processes of life
396	and followed them step by step to their excretion products.
397	
398	Voit himself established the role of gases in human metabolism. Atmospheric
399	nitrogen plays no role in this process. He also constructed a calorimeter large
400	enough to accommodate a man! He showed that fats and carbohydrates are the
401	dominant sources of human energy.
402	
403	The issue of the site of oxidation raged throughout the 19 th century, but the German
404	physiologist, Eduard Pfluger (1829-1910), showed that true "respiration" takes
405	place in the "peripheral tissue." He carried out extensive studies of glycogen.
406	
407	Once it became clear that blood was primarily a transport entity, Hoppe-Seyler
408	discovered oxyhemoglobin by its optical absorption spectrum. He finally isolated
409	a crystalline compound now called hemoglobin. Further understanding was
410	obtained by Gabriel Stokes (1819-1903):
411	
412	We may infer that the coloring matter of blood, like indigo, is capable of existing
413	in two states of oxidation, distinguished by a difference of colors.
414	It may be made to pass from the more to the less oxidized state
415	by the action of suitable reducing agents,
416	and recovers its oxygen by absorption from the air.
417	
418	(Sir Gabriel Stokes was perhaps the greatest Irish mathematician of the 19 th
419	century!)
420	
421	The active element in hemoglobin, the porphyrin ring, was elucidated by Hans
422	Fischer (1881-1945) in 1927. Once the oxygen left the hemoglobin, it underwent a
423	series of transformations resulting in cytochrome. The story is beautifully told in
424	the book by Albert Szent-Gyorgyi (1893-1986) (Nobel 1937): On Oxidation,
425	Fermentation, Vitamins, Health and Disease (1939).
426	Chanten 17 adduesses what I signaton calls "Internations Matchalians". It is and
427	Chapter 17 addresses what Leicester calls "Intermediary Metabolism." It is one thing to know the initial "reactants" and the final "products," but biochemistry is
428	all about the actual reaction mechanism from start to finish. Many new molecules
429 430	and new reactions were discovered in the 20 th century. One of the leading
430 431	biochemists of the 1920s was Sir Frederick Gowland Hopkins (1861-1947) (Nobel
431 432	1929) of Cambridge University. In 1921 he stated the fundamental fact about life:
432	1727) of Camoriage Oniversity. In 1721 he stated the fundamental fact about fife.

The living cell is itself the unit.
The manifestations of life viewed from this standpoint
depend upon changes undergone by diverse molecules
of a kind which need not elude ordinary chemical studies.
On this view, the essence of what is peculiar to the cell
as a chemical system lies not in the nature,
but in the organization of its processes.
Leicester identifies this paradigm as the real start of Biochemistry as we know it
today.
Two areas made major progress throughout the 1920s and 1930s: alcoholic
fermentation and muscle metabolism. Sir Arthur Harden (1865-1940) (Nobel
1929) of the Lister Institute in Manchester deciphered the chemistry of "yeast
juice" along with his assistant William John Young (1878-1942). They discovered
that phosphate esters were required to break down the sugar to ethanol.


451

 $2C_6H_{12}O_6 + 2Na_2HPO_4 \rightarrow C_6H_{10}O_4(PO_4)Na_2 + 2H_2O + CO_2 + 2C_2H_6O$

452

Hopkins and Walter Morley Fletcher (1873-1933) explored the inner details of 453 muscle metabolism. Under anaerobic conditions lactic acid was produced. Otto 454 Fritz Meyerhof (1884-1951) (Nobel 1922) discovered that there were common 455 pathways in alcoholic fermentation and in muscle respiration. They involved 456 phosphate esters. He published the book Chemical Dynamics of Life Phenomena 457 (1924). Fritz Albert Lipmann (1899-1986) (Nobel 1953) continued this 458 programme and formulated the role of adenosine triphosphate (ATP) and 459 Coenzyme A: 460

461

- The other Nobel Prize in Physiology and Medicine winner in 1953 was Hans Krebs (1900-1981). Krebs is most famous for elucidating the "citric acid cycle" and the "urea cycle." Biochemistry allowed chemists in the 20th century to obtain real gold!
- 468

469 Chapter 18 is devoted to the history of vitamins. A vitamin is an essential

- substance needed for life that is not synthesized by the organism itself. The first
- Nobel Prize for work on vitamins was awarded to Adolf Windaus (1876-1959) in
- 1928. In 1929 Christiaan Eijkman (1858-1930) and Sir Frederick Hopkins won for
- their extensive work on vitamins, including "growth stimulating B vitamins." In
- 474 1930 Paul Karrer (1889-1971) won for his work on beta-carotene (vitamin A).
- 475 Many more Nobel Prizes have continued to be awarded for work on vitamins.
- 476

The final chapter is devoted to the signaling substances of life: hormones. One of the most important aspects of living organisms is their ability to "adjust" to their

the most important aspects of living organisms is their ability to "adjust" to their current state. Even in the 18th century, the French physician Theophile de Bordeu

480 (1722-1776) identified "organs of secretion," such as the ovaries. In the 19th

century A.A. Berthold (1803-1861) studied avian testes transplanted into other

locations. They continued to secrete substances that promoted particular growth.

The "endocrine system" is characterized by specific secretions from the adrenal

484 glands. The thyroid gland also produces active control substances.

485

The research goal was to isolate and purify specific hormones. Adrenaline was crystallized in 1901 by Jokichi Takamine (1854-1922). Major progress in the understanding of hormones was made by William Maddock Bayliss (1860-1924) and Ernest Henry Starling (1866-1927) during their studies of the pancreas. In 1902 they found that:

491

The contact of the [gastrointestinal] acid with the epithelial cells of the duodenum causes in them the production of a body (secretin) which is absorbed from the cells by the blood current, and is carried to the pancreas, where it acts as a specific stimulus to the pancreatic cells, exciting a secretion of pancreatic juice proportional to the amount of secretin present.

497

A Nobel Prize was awarded in 1923 to Frederick G. Banting (1891-1941) and John
Macleod (1876-1935) at the University of Toronto for the discovery and

500 purification of insulin. This story is thrilling and has recently been celebrated in

501 Bologna, Italy with a statue at a park dedicated to Banting. (I was privileged to be 502 the historian for this event.)

- Henry Leicester was very pleased to be able to write the history of biochemistry as 504
- his last major contribution. HIST owes him many debts of gratitude for his many 505
- years of service and teaching. 506